122 research outputs found

    The good and bad of ERBB receptors in breast - quanno viniti mi s’allarga lu cori, ma quanno vinni iti puru

    Get PDF
    The mammary gland is a dynamic organ displaying structural changes throughout the female reproductive cycle. The gland differentiation follows defined stages (embryonic, prepubertal and pubertal stages, pregnancy, lactation and involution) connected to sexual development and reproduction. Complex two-way interactions between mammary epithelial cells and the surrounding stroma direct proliferation, duct formation, branching and terminal differentiation during these stages. The members of the ERBB family of receptor tyrosine kinases (RTK) are involved in each of these processes and play distinct and complementary roles. Altered ERBB signaling, mostly due to over-expression and/or, to a minor extent, mutation of one or more of these receptors, results in aberrant cellular responses leading to breast cancers. Thus, the phenotype induced by altered ERBB modulation in breast cancer may highlight relevant aspects of the molecular mechanisms underlying normal breast development. In the last 15 years, in collaboration with other groups, we have studied the molecular basis of RTK modulation, and contributed to the definition of relevant molecular events and organelle interactions underlying ERBB1 (EGFR) and ERBB2 internalization and trafficking (1-9). These studies brought us to approach the role of these events (10-18) in cancer pathogenesis and progression, and led to the identification of a key druggable molecular target to revert the resistance to Trastuzumab (Herceptin®), a humanized antibody to ERBB2, representing the front line treatment in ERBB2 over-expressing breast cancer (19). In this lecture I will review the current knowledge on the role of ERBB receptors in normal breast development, their role in breast cancer onset and progression, and our recent results in the field

    Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments

    Get PDF
    Receptor endocytosis is a fundamental step in controlling the magnitude, duration, and nature of cell signaling events. Confluent endothelial cells are contact inhibited in their growth and respond poorly to the proliferative signals of vascular endothelial growth factor (VEGF). In a previous study, we found that the association of vascular endothelial cadherin (VEC) with VEGF receptor (VEGFR) type 2 contributes to density-dependent growth inhibition (Lampugnani, G.M., A. Zanetti, M. Corada, T. Takahashi, G. Balconi, F. Breviario, F. Orsenigo, A. Cattelino, R. Kemler, T.O. Daniel, and E. Dejana. 2003. J. Cell Biol. 161:793–804). In the present study, we describe the mechanism through which VEC reduces VEGFR-2 signaling. We found that VEGF induces the clathrin-dependent internalization of VEGFR-2. When VEC is absent or not engaged at junctions, VEGFR-2 is internalized more rapidly and remains in endosomal compartments for a longer time. Internalization does not terminate its signaling; instead, the internalized receptor is phosphorylated, codistributes with active phospholipase C–γ, and activates p44/42 mitogen-activated protein kinase phosphorylation and cell proliferation. Inhibition of VEGFR-2 internalization reestablishes the contact inhibition of cell growth, whereas silencing the junction-associated density-enhanced phosphatase-1/CD148 phosphatase restores VEGFR-2 internalization and signaling. Thus, VEC limits cell proliferation by retaining VEGFR-2 at the membrane and preventing its internalization into signaling compartments

    Tyrosine Phosphorylation of Eps15 Is Required for Ligand-Regulated, but Not Constitutive, Endocytosis

    Get PDF
    Membrane receptors are internalized either constitutively or upon ligand engagement. Whereas there is evidence for differential regulation of the two processes, little is known about the molecular machinery involved. Previous studies have shown that an unidentified kinase substrate is required for endocytosis of the epidermal growth factor receptor (EGFR), the prototypical ligand-inducible receptor, but not of the transferrin receptor (TfR), the prototypical constitutively internalized receptor. Eps15, an endocytic protein that is tyrosine phosphorylated by EGFR, is a candidate for such a function. Here, we show that tyrosine phosphorylation of Eps15 is necessary for internalization of the EGFR, but not of the TfR. We mapped Tyr 850 as the major in vivo tyrosine phosphorylation site of Eps15. A phosphorylation-negative mutant of Eps15 acted as a dominant negative on the internalization of the EGFR, but not of the TfR. A phosphopeptide, corresponding to the phosphorylated sequence of Eps15, inhibited EGFR endocytosis, suggesting that phosphotyrosine in Eps15 serves as a docking site for a phosphotyrosine binding protein. Thus, tyrosine phosphorylation of Eps15 represents the first molecular determinant, other than those contained in the receptors themselves, which is involved in the differential regulation of constitutive vs. regulated endocytosis

    Dense core secretory vesicles revealed as a dynamic Ca2+ store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera

    Get PDF
    The role of dense core secretory vesicles in the control of cytosolic-free Ca2+ concentrations ([Ca2+]c) in neuronal and neuroendocrine cells is enigmatic. By constructing a vesicle-associated membrane protein 2–synaptobrevin.aequorin chimera, we show that in clonal pancreatic islet β-cells: (a) increases in [Ca2+]c cause a prompt increase in intravesicular-free Ca2+ concentration ([Ca2+]SV), which is mediated by a P-type Ca2+-ATPase distinct from the sarco(endo) plasmic reticulum Ca2+-ATPase, but which may be related to the PMR1/ATP2C1 family of Ca2+ pumps; (b) steady state Ca2+ concentrations are 3–5-fold lower in secretory vesicles than in the endoplasmic reticulum (ER) or Golgi apparatus, suggesting the existence of tightly bound and more rapidly exchanging pools of Ca2+; (c) inositol (1,4,5) trisphosphate has no impact on [Ca2+]SV in intact or permeabilized cells; and (d) ryanodine receptor (RyR) activation with caffeine or 4-chloro-3-ethylphenol in intact cells, or cyclic ADPribose in permeabilized cells, causes a dramatic fall in [Ca2+]SV. Thus, secretory vesicles represent a dynamic Ca2+ store in neuroendocrine cells, whose characteristics are in part distinct from the ER/Golgi apparatus. The presence of RyRs on secretory vesicles suggests that local Ca2+-induced Ca2+ release from vesicles docked at the plasma membrane could participate in triggering exocytosis

    Numb Is an Endocytic Protein

    Get PDF
    Numb is a protein that in Drosophila determines cell fate as a result of its asymmetric partitioning at mitosis. The function of Numb has been linked to its ability to bind and to biologically antagonize Notch, a membrane receptor that also specifies cell fate. The biochemical mechanisms underlying the action of Numb, however, are still largely unknown. The wide pattern of expression of Numb suggests a general function in cellular homeostasis that could be additional to, or part of, its action in fate determination. Such a function could be endocytosis, as suggested by the interaction of Numb with Eps15, a component of the endocytic machinery. Here, we demonstrate that Numb is an endocytic protein. We found that Numb localizes to endocytic organelles and is cotrafficked with internalizing receptors. Moreover, it associates with the appendage domain of α adaptin, a subunit of AP2, a major component of clathrin-coated pits. Finally, fragments of Numb act as dominant negatives on both constitutive and ligand-regulated receptor-mediated internalization, suggesting a general role for Numb in the endocytic process

    Amyloid precursor protein and Presenilin1 interact with the adaptor GRB2 and modulate ERK 1,2 signaling.

    Get PDF
    The amyloid precursor protein (APP) and the presenilins 1 and 2 are genetically linked to the development of familial Alzheimer disease. APP is a single-pass transmembrane protein and precursor of fibrillar and toxic amyloid-beta peptides, which are considered responsible for Alzheimer disease neurodegeneration. Presenilins are multipass membrane proteins, involved in the enzymatic cleavage of APP and other signaling receptors and transducers. The role of APP and presenilins in Alzheimer disease development seems to be related to the formation of amyloid-beta peptides; however, their physiological function, reciprocal interaction, and molecular mechanisms leading to neurodegeneration are unclear. APP and presenilins are also involved in multiple interactions with intracellular proteins, the significance of which is under investigation. Among the different APP-interacting proteins, we focused our interest on the GRB2 adaptor protein, which connects cell surface receptors to intracellular signaling pathways. In this study we provide evidence by co-immunoprecipitation experiments, confocal and electron microscopy, and by fluorescence resonance energy transfer experiments that both APP and presenilin1 interact with GRB2 in vesicular structures at the centrosome of the cell. The final target for these interactions is ERK1,2, which is activated in mitotic centrosomes in a PS1- and APP-dependent manner. These data suggest that both APP and presenilin1 can be part of a common signaling pathway that regulates ERK1,2 and the cell cycle

    Lipid Rafts and Clathrin Cooperate in the Internalization of PrPC in Epithelial FRT Cells

    Get PDF
    The cellular prion protein (PrP(C)) plays a key role in the pathogenesis of Transmissible Spongiform Encephalopathies in which the protein undergoes post-translational conversion to the infectious form (PrP(Sc)). Although endocytosis appears to be required for this conversion, the mechanism of PrP(C) internalization is still debated, as caveolae/raft- and clathrin-dependent processes have all been reported to be involved. METHODOLOGY/PRINCIPAL FINDINGS: We have investigated the mechanism of PrP(C) endocytosis in Fischer Rat Thyroid (FRT) cells, which lack caveolin-1 (cav-1) and caveolae, and in FRT/cav-1 cells which form functional caveolae. We show that PrP(C) internalization requires activated Cdc-42 and is sensitive to cholesterol depletion but not to cav-1 expression suggesting a role for rafts but not for caveolae in PrP(C) endocytosis. PrP(C) internalization is also affected by knock down of clathrin and by the expression of dominant negative Eps15 and Dynamin 2 mutants, indicating the involvement of a clathrin-dependent pathway. Notably, PrP(C) co-immunoprecipitates with clathrin and remains associated with detergent-insoluble microdomains during internalization thus indicating that PrP(C) can enter the cell via multiple pathways and that rafts and clathrin cooperate in its internalization. CONCLUSIONS/SIGNIFICANCE: These findings are of particular interest if we consider that the internalization route/s undertaken by PrP(C) can be crucial for the ability of different prion strains to infect and to replicate in different cell lines

    High Data Output and Automated 3D Correlative Light–Electron Microscopy Method

    Get PDF
    Correlative light/electron microscopy (CLEM) allows the simultaneous observation of a given subcellular structure by fluorescence light microscopy (FLM) and electron microscopy. The use of this approach is becoming increasingly frequent in cell biology. In this study, we report on a new high data output CLEM method based on the use of cryosections. We successfully applied the method to analyze the structure of rough and smooth Russell bodies used as model systems. The major advantages of our method are (i) the possibility to correlate several hundreds of events at the same time, (ii) the possibility to perform three-dimensional (3D) correlation, (iii) the possibility to immunolabel both endogenous and recombinantly expressed proteins at the same time and (iv) the possibility to combine the high data analysis capability of FLM with the high precision–accuracy of transmission electron microscopy in a CLEM hybrid morphometry analysis. We have identified and optimized critical steps in sample preparation, defined routines for sample analysis and retracing of regions of interest, developed software for semi/fully automatic 3D reconstruction and defined preliminary conditions for an hybrid light/electron microscopy morphometry approach

    Pharmacological activation of autophagy favors the clearing of intracellular aggregates of misfolded prion protein peptide to prevent neuronal death

    Get PDF
    According to the "gain-of-toxicity mechanism", neuronal loss during cerebral proteinopathies is caused by accumulation of aggregation-prone conformers of misfolded cellular proteins, although it is still debated which aggregation state actually corresponds to the neurotoxic entity. Autophagy, originally described as a variant of programmed cell death, is now emerging as a crucial mechanism for cell survival in response to a variety of cell stressors, including nutrient deprivation, damage of cytoplasmic organelles, or accumulation of misfolded proteins. Impairment of autophagic flux in neurons often associates with neurodegeneration during cerebral amyloidosis, suggesting a role in clearing neurons from aggregation-prone misfolded proteins. Thus, autophagy may represent a target for innovative therapies. In this work, we show that alterations of autophagy progression occur in neurons following in vitro exposure to the amyloidogenic and neurotoxic prion protein-derived peptide PrP90-231. We report that the increase of autophagic flux represents a strategy adopted by neurons to survive the intracellular accumulation of misfolded PrP90-231. In particular, PrP90-231 internalization in A1 murine mesencephalic neurons occurs in acidic structures, showing electron microscopy hallmarks of autophagosomes and autophagolysosomes. However, these structures do not undergo resolution and accumulate in cytosol, suggesting that, in the presence of PrP90-231, autophagy is activated but its progression is impaired; the inability to clear PrP90-231 via autophagy induces cytotoxicity, causing impairment of lysosomal integrity and cytosolic diffusion of hydrolytic enzymes. Conversely, the induction of autophagy by pharmacological  blockade of mTOR kinase or trophic factor deprivation restored autophagy resolution, reducing intracellular PrP90-231 accumulation and neuronal death. Taken together, these data indicate that PrP90-231 internalization induces an autophagic defensive response in A1 neurons, although incomplete and insufficient to grant survival; the pharmacological enhancement of this process exerts neuroprotection favoring the clearing of the internalized peptide and could represents a promising neuroprotective tool for neurodegenerative proteinopathies
    • …
    corecore